管理学百科|12Reads

分层抽样

分层抽样

分层抽样(stratified sampling)

先将总体的单位按某种特征分为若干次级总体(层),然后再从每一层内进行单纯随机抽样,组成一个样本。分层可以提高总体指标估计值的精确度,它可以将一个内部变异很大的总体分成一些内部变异较小的层(次总体)。

每一层内个体变异越小越好,层间变异则越大越好。

分层抽样比单纯随机抽样所得到的结果准确性更高,组织管理更方便,而且它能保证总体中每一层都有个体被抽到。这样除了能估计总体的参数值,还可以分别估计各个层内的情况,因此分层抽样技术常被采用。

实例介绍

例如,一个单位的职工有500人,其中不到35岁有125人,35岁至49岁的有280人,50岁以上的有95人.为了了解这个单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,由于职工年龄与这项指标有关,决定采用分层抽样方法进行抽取.因为样本容量与总体的个数的比为1:5,所以在各年龄段抽取的个数依次为125/5,280/5,95/5,即25,56,19。

该词条对我有帮助 (0)
成就高成效,实现管理能力快速提升,12Reads系列教材限时特惠! 立即购买 PURCHASE NOW