管理学百科|12Reads

二次曲线法

什么是二次曲线法

二次曲线法是研究时间序列观察值数据随时间变动呈现一种由高到低再到高(或由低到高再到低)的趋势变化的曲线外推预测方法.由于时间序列观察值的散点图呈现抛物线形状,故也称之为二次抛物线预测模型。

假设曲线趋势外推预测模型为:

\hat y_t=\hat a+\hat b x_t+\hat c x_t^2+\hat dx_t^3+\hat e x_t^4+\cdots

式中:\hat y_t第t期某变量的预测值(因变量);xt——时间变量(自变量),t=1,2,\cdots,n

1) 当\hat c=\hat d=\cdots=0时,\hat y_t=\hat a +\hat b x_t,即为线性趋势外推预测法的模型;

2) 当\hat d=\hat e=\cdots=0时,\hat y_t=\hat a +\hat b x_t+\hat c x_t^2,即为二次曲线外推预测法的模型。

二次曲线法的计算

用最小二乘法确定待定参数

1) 参数的确定

yt表示第t期的时间序列的观察值;\hat{y_t}——第t期的预测值;et——第t期的离差;Q——离差平方和。由二次曲线外推预测法的模型\hat{y_t}=\hat a+\hat bx_t +\hat cx_t ^2,有

e_t=y_t-\hat y_t=y_t-\hat a-\hat bx_t-\hat cx_t^2

Q=\sum_{t=1}^{n}e_t^2=\sum_{t=1}^{n}(y_t-\hat a-\hat bx_t-\hat cx_t^2)^2 (3.2.2)

与拟合直线外推法相同的原理,对式(3.2.2)求\frac{\partial Q}{\partial\hat a},\frac{\partial Q}{\partial\hat b},\frac{\partial Q}{\partial\hat c},并分别令其等于0,则可得关于\hat a,\hat b,\hat c,的方程组

\begin{cases}\sum_{t=1}^n y_t=n\hat a+\hat b\sum_{t=1}^n x_t+\hat c \sum_{t=1}^n x_t^2 \\ \sum_{t=1}^n x_t y_t=\hat a\sum_{t=1}^n x_t+\hat b\sum_{t=1}^n x_t^2+\hat c \sum_{t=1}^n x_t^3 \\ \sum_{t=1}^n x_t^2 y_t=\hat a\sum_{t=1}^n x_t^2+\hat b\sum_{t=1}^n x_t^3+\hat c \sum_{t=1}^n x_t^4 \end{cases} (3.2.3)

由于xt表示时间序列的编号,如同拟合直线方程法一样,当时间序列观察期的项数为奇数时,令其中间项(\frac{n+1}{2})的编号为0,则\sum_{t=1}^n x_t=0,\sum_{t=1}^n x_t^3=0,\cdots,

式(3.2.3)可简化为:

\begin{cases} \sum_{t=1}^n y_t=n\hat a++\hat c \sum_{t=1}^n x_t^2 \\ \sum_{t=1}^n x_t y_t=\hat b\sum_{t=1}^n x_t^2 \\ \sum_{t=1}^n x_t^2 y_t=\hat a\sum_{t=1}^n x_t^2+\hat c \sum_{t=1}^n x_t^4 \end{cases} (3.2.4)

解上面的方程组可得:

\begin{cases} \hat a=\frac{\sum_{t=1}^n x_t^4 \sum_{t=1}^n y_t-\sum_{t=1}^n x_t^2\sum_{t=1}^n x_t^2y_t}{n\sum_{t=1}^n x_t^4-(\sum_{t=1}^n x_t^2)^2} \\ \hat b=\frac{\sum_{t=1}^n x_t y_t}{\sum_{t=1}^n x_t^2} \\ \hat c=\frac{n\sum_{t=1}^n x_t^2 y_t-\sum_{t=1}^n x_t^2 \sum_{t=1}^n y_t}{n\sum_{t=1}^n x_t^4-(\sum_{t=1}^n x_t^2)^2} \end{cases} (3.2.5)

2) 预测步骤

例3.4某公司1995~2003年的商品销售收入如表3.4所示,试预测该公司2004年的销售收入。

表3.4某公司1995~2003年商品销售收入数据表 (单位:万元)
年份 1995 1996 1997 1998 1999 2000 2001 2002 2003
销售收入 545 641 764 923 1107 1322 1568 1836 2140

解:

①绘制散点图如图3.3所示。Image:绘制的散点图.jpg

②根据观察值的散点图的变化趋势确定其属于二次曲线变化趋势后,列表计算二次曲线待定参数所需的数据。计算结果如表3.5所示。

③计算待定参数,建立预测模型,并计算预测值。

利用表3.5中的有关数据,代入式(3.2.5)中,计算得:

\hat a=1107.29,\hat b=199.53,\hat c=14.67

该例的二次曲线的趋势外推预测模型为:

\hat y_t=1107.29+119.53 x_t+14.67 x_t^2 (3.2.6)

当x_t=5时,代入上式得

\hat y_{2004}=1107.29+119.53\times 5+14.67\times 25=2471.89(万元)

表3.5某公司商品销售收入及有关数据计算表 (单位:万元)
年份 xt 销售额yt x_t^2 x_t^4 xtyt x_t^2 y_t \hat y_t (y_t-\hat y_t)^2
1995 -4 545 16 256 2180 8720 543.89 1.23
1996 -3 641 9 81 -1923 5769 640.73 0.07
1997 -2 764 4 16 -1528 3056 766.91 8.47
1998 -1 923 1 1 -923 923 922.43 0.32
1999 0 1107 0 0 0 0 1107.29 0.08
2000 1 1322 1 1 1322 1322 1321.49 0.26
2001 2 1568 4 16 3136 6272 1565.03 8.82
2002 3 1836 9 81 5508 16524 1837.91 3.65
2003 4 2140 16 256 8560 34240 2140.13 0.02
\sum 0 10846 60 708 11972 76826 22.92

二次曲线法的特点

(1)二次曲线方程的二阶差分是一个常数。

(2)二次曲线法适用于时间序列数据呈抛物线形状上升或下降,且曲线仅有一个极点(极大值或极小值)的情况下使用。

(3)对于更高次的曲线方程,分析思路、求解未知参数的方法与此类似。

该词条对我有帮助 (0)
成就高成效,实现管理能力快速提升,12Reads系列教材限时特惠! 立即购买 PURCHASE NOW