什么是T检验
T检验,亦称student t检验(Student’s t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。
T检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家。戈特特于1908年在Biometrika上公布T检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。
T检验的适用条件:正态分布资料
T检验注意事项
要有严密的抽样设计随机、均衡、可比
选用的检验方法必须符合其适用条件(注意:t检验的前提是资料服从正态分布)
单侧检验和双侧检验
单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大。
假设检验的结论不能绝对化
不能拒绝H0,有可能是样本数量不够拒绝H0 ,有可能犯第Ⅰ类错误
正确理解P值与差别有无统计学意义
P越小,不是说明实际差别越大,而是说越有理由拒绝H0 ,越有理由说明两者有差异,差别有无统计学意义和有无专业上的实际意义并不完全相同
假设检验和可信区间的关系
结论具有一致性
差异:提供的信息不同
区间估计给出总体均值可能取值范围,但不给出确切的概率值,假设检验可以给出H0成立与否的概率