简介
相关分析法是测定经济现象之间相关关系的规律性,并据以进行预测和控制的分析方法。
社会经济形象之间存在着大量的相互联系、相互依赖、相互制约的数量关系。这种关系可分为两种类型。一类是函数关系,它反映着现象之间严格的依存关系,也称确定性的依存关系。在这种关系中,对于变量的每一个数值,都有一个或几个确定的值与之对应。
另一类为相关关系,在这种关系中,变量之间存在着不确定、不严格的依存关系,对于变量的某个数值,可以有另一变量的若干数值与之相对应,这若干个数值围绕着它们的平均数呈现出有规律的波动。例如,批量生产的某产品产量与相对应的单位产品成本,某些商品价格的升降与消费者需求的变化,就存在着这样的相关关系。
应用
实践中进行相关分析要依次解决以下问题;
(1)确定现象之间有无相关关系以及相关关系的类型。对不熟悉的现象,则
回归方程线
需收集变量之间大量的对应资料,用绘制相关图的方法做初步判断。从变量之间相互关系的方向看,变量之间有时存在着同增同减的同方向变动,是正 相关关系;有时变量之间存在着一增一减的反方向变动,是负相关关系。从变量之间相关的表现形式看有直线关系和曲线相关,从相关关系涉及到的变量的个数看,有一元相关或简单相关关系和多元相关或复相关关系。
(2)判定现象之间相关关系的密切程度,通常是计算相关系数R及绝对值在0.8以上表明高度相关,必要时应对R进行显著性检验。
(3)拟合回归方程,如果现象间相关关系密切,就根据其关系的类型,建立
数学模型用相应的数学表达式—–回归方程来反映这种数量关系,这就是回归分析。
(4)判断回归分析的可靠性,要用数理统计的方法对回归方程进行检验。只有通过检验的回归方程才能用于预测和控制。
(5)根据回归方程进行内插外推预测和控制。
运用要点
应用相关分析与回归分析要注意两个问题:①在资料上,相关分析要求两个变量都必须是随机的;而回归分析则要求因变量必须是随机的,自变量则不能是随机的,而是规定的值,这与在回归方程中用给定的自变量值来估计平均的因变量值是一致的。②防止虚假相关和虚假回归。在对两个时间数列进行相关分析和回归分析时,常因各期指标值受时间因素的强烈影响而损伤了所需要的随机性;也有时两个时间数列表面上似有同升同降的变动,实际上并无本质联系。对这类资料求出的高度相关系数或回归联系,往往是一种假象。为此,在用相关分析法研究复杂的社会经济现象时,需要有科学的理论指导和正确的判断。