管理学百科|12Reads

灰色关联分析

什么是灰色关联分析

灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。

灰色关联分析的使用

通常可以运用此方法来分析各个因素对于结果的影响程度,也可以运用此方法解决随时间变化的综合评价类问题,其核心是按照一定规则确立随时间变化的母序列,把各个评估对象随时间的变化作为子序列,求各个子序列与母序列的相关程度,依照相关性大小得出结论。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

灰色关联分析的步骤

灰色关联分析的具体计算步骤如下:

第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。反映系统行为特征的数据序列,称为参考数列。影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k = 1,2,Λ,n};比较数列(又称子序列)Xi={Xi(k) | k = 1,2,Λ,n},i = 1,2,Λ,m

第二步,变量的无量纲化

由于系统中各因素列中的数据可能因量纲不同,不便于比较或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行数据的无量纲化处理。

x_i(k)=\frac{X_i(k)}{X_i(l)},k=1,2,\Lambda,n;i=0,1,2,\Lambda,m

第三步,计算关联系数

x0(k)xi(k)的关联系数

Image:灰色关联分析1.jpg

\triangle_i(k)=|y(k)-x_i(k)|,则

Image:灰色关联分析2.jpg

\rho\in(0,\infty),称为分辨系数。ρ越小,分辨力越大,一般ρ的取值区间为(0,1),具体取值可视情况而定。当\rho\le0.5463时,分辨力最好,通常取ρ = 0.5

第四步,计算关联度

因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:

r_i=\frac{1}{n}\sum_{k=1}^n\xi_i(k),k=1,2,\Lambda,n

第五步,关联度排序

关联度按大小排序,如果r1 < r2,则参考数列y与比较数列x2更相似。

在算出Xi(k)序列与Y(k)序列的关联系数后,计算各类关联系数的平均值,平均值ri就称为Y(k)与Xi(k)的关联度。

灰色关联分析的实例

下表为某地区国内生产总值的统计数据(以百万元计),问该地区从2000年到2005年之间哪一种产业对GDP总量影响最大。

年份 国内生产总值 第一产业 第二产业 第三产业
2000 1988 386 839 763
2001 2061 408 846 808
2002 2335 422 960 953
2003 2750 482 1258 1010
2004 3356 511 1577 1268
2005 3806 561 1893 1352

步骤1:确立母序列,在此需要分别将三种产业与国内生产总值比较计算其关联程度,故母序列为国内生产总值。若是解决综合评价问题时则母序列可能需要自己生成,通常选定每个指标或时间段中所有子序列中的最佳值组成的新序列为母序列。

步骤2:无量纲化处理,在此采用均值化法,即将各个序列每年的统计值与整条序列的均值作比值,可以得到如下结果:

年份 国内生产总值 第一产业 第二产业 第三产业
2000 0.7320 0.8361 0.6828 0.7439
2001 0.7588 0.8838 0.6885 0.7878
2002 0.8597 0.9141 0.7812 0.9292
2003 1.0125 1.0440 1.0237 0.9847
2004 1.2356 1.1069 1.2833 1.2363
2005 1.4013 1.2152 1.5405 1.3182

步骤3:计算每个子序列中各项参数与母序列对应参数的关联系数,运用公式Image:灰色关联分析1.jpg,其中Kij表示第i个子序列的第j个参数与母序列(即0序列)的第j个参数的关联系数,p为分辨系数取值范围在,其取值越小求得的关联系数之间的差异性越显著,在此取为0.5进行计算可得到如下结果:

年份t S01(t) S02(t) S03(t)
2000 0.4755 0.6591 0.8933
2001 0.4299 0.5739 0.7681
2002 0.6358 0.5465 0.5767
2003 0.7527 0.8993 0.7758
2004 0.4228 0.6661 1.0000
2005 0.3358 0.4037 0.5322

步骤4:计算关联度,用公式r_i=\frac{1}{n}\sum_{k=1}^n\xi_i(k),k=1,2,\Lambda,n
可以得到r01 = 0.5088r02 = 0.6248r03 = 0.7577,通过比较三个子序列与母序列的关联度可以得出结论:该地区在2000年到2005年期间的国内生产总值受到第三产业的影响最大。

该词条对我有帮助 (0)
成就高成效,实现管理能力快速提升,12Reads系列教材限时特惠! 立即购买 PURCHASE NOW