什么是启发式算法
启发式算法是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。
启发式算法的内容
计算机科学的两大基础目标,就是发现可证明其执行效率良好且可得最佳解或次佳解的算法。而启发式算法则试图一次提供一或全部目标。 例如它常能发现很不错的解,但也没办法证明它不会得到较坏的解;它通常可在合理时间解出答案,但也没办法知道它是否每次都可以这样的速度求解。
有时候人们会发现在某些特殊情况下,启发式算法会得到很坏的答案或效率极差,然而造成那些特殊情况的数据组合,也许永远不会在现实世界出现。因此现实世界中启发式算法常用来解决问题。启发式算法处理许多实际问题时通常可以在合理时间内得到不错的答案。
有一类的通用启发式策略称为元启发式算法(metaheuristic),通常使用乱数搜寻技巧。他们可以应用在非常广泛的问题上,但不能保证效率。
近年来随着智能计算领域的发展,出现了一类被称为超启发式算法(Hyper-Heuristic Algorithm)的新算法类型。最近几年,智能计算领域的著名国际会议(GECCO 2009, CEC 2010,PPSN 2010)分别举办了专门针对超启发式算法的workshop或session。从GECCO 2011开始,超启发式算法的相关研究正式成为该会议的一个领域(self* search-new frontier track)。
国际智能计算领域的两大著名期刊Journal of Heuristics和Evolutionary Computation也在2010年和2012年分别安排了专刊,着重介绍与超启发式算法有关的研究进展。
启发式算法的效能
任何的搜寻问题中,每个节点都有b个选择以及到达目标的深度d,一个毫无技巧的算法通常都要搜寻bd个节点才能找到答案。启发式算法借由使用某种切割机制降低了分叉率(branching factor)以改进搜寻效率,由b降到较低的b’。分叉率可以用来定义启发式算法的偏序关系,例如:若在一个n节点的搜寻树上,h1(n)的分叉率较h2(n)低,则 h1(n) < h2(n)。启发式为每个要解决特定问题的搜寻树的每个节点提供了较低的分叉率,因此它们拥有较佳效率的计算能力。
如何找到一个分叉率较少又通用的合理启发式算法,已被人工智能社群深入探究过。 他们使用几种常见技术:部分问题的解答的代价通常可以评估解决整个问题的代价,通常很合理。例如一个10-puzzle拼盘,解题的代价应该与将1到5的方块移回正确位置的代价差不多。通常解题者会先建立一个储存部份问题所需代价的模式数据库(pattern database)以评估问题。 解决较易的近似问题通常可以拿来合理评估原先问题。例如曼哈顿距离是一个简单版本的n-puzzle问题,因为我们假设可以独立移动一个方块到我们想要的位置,而暂不考虑会移到其他方块的问题。 给我们一群合理的启发式函式h1(n),h2(n),…,hi(n),而函式h(n) = max{h1(n),h2(n),…,hi(n)}则是个可预测这些函式的启发式函式。 一个在1993年由A.E. Prieditis写出的程式ABSOLVER就运用了这些技术,这程式可以自动为问题产生启发式算法。ABSOLVER为8-puzzle产生的启发式算法优于任何先前存在的!而且它也发现了第一个有用的解魔术方块的启发式程式。