管理学百科|12Reads

协方差分析


意义/协方差分析

当研究者知道有些 协变量会影响 因变量,却不能够控制和不感兴趣时(当研究学习时间对学习绩效的影响,学生原来的学习基础、智力学习兴趣就是 协变量),可以在实验处理前予以观测,然后在统计时运用协方差分析来处理。

将 协变量对 因变量的影响从 自变量中分离出去,可以进一步提高实验 精确度和 统计检验 灵敏度。

方差是用来度量单个变量 “自身变异”大小的 总体参数,方差越大,该变量的变异越大;

协方差是用来度量两个变量之间 “协同变异”大小的 总体参数,即二个变量相互影响大小的参数,协方差的 绝对值越大,两个变量相互影响越大。

对于仅涉及单个变量的试验资料,由于其总变异仅为“自身变异”(如单因素 完全随机设计试验资料,“自身变异”是指由处理和 随机误差所引起的变异),因而可以用 方差分析法进行分析;

对于涉及两个变量的试验资料,由于每个变量的总变异既包含了“自身变异”又包含了“协同变异”(是指由另一个变量所引起的变异),须采用协方差分析法来进行分析,才能得到正确结论。

方法/协方差分析

(一)回归模型的协方差分析

如果那些不能很好地进行试验控制的因素是可量测的,且又和试验结果之间存在直线回归关系,就可利用这种直线回归关系将各处理的观测值都矫正到初始条件相同时的结果,使得处理间的比较能在相同基础上进行,而得出正确结论。这一做法在统计上称为统计控制。

这时所进行的协方差分析是将回归分析和方差分析结合起来的一种统计分析方法,这种协方差分析称为回归模型的协方差分析。

(二)相关模型的协方差分析

方差分析中根据均方MS与期望均方EMS间的关系,可获得不同变异来源的方差分量估计值;在协方差分析中,根据均积MP与期望均积EMP间的关系,可获得不同变异来源的协方差分量估计值。

这种协方差分析称为相关模型的协方差分析。

该词条对我有帮助 (0)
成就高成效,实现管理能力快速提升,12Reads系列教材限时特惠! 立即购买 PURCHASE NOW